The projection from medial geniculate to field AI in cat: organization in the isofrequency dimension.
نویسندگان
چکیده
The topography of the anatomical projection from isofrequency contours (IFCs) in auditory thalamus to IFCs in primary auditory cortex (field AI) was investigated in the cat. In each experiment, a best-frequency map of AI was obtained with electrophysiological recording techniques. Then, different retrogradely transported tracers (HRP, fluorescent dyes) were introduced into AI. In some experiments, different parts (e.g., dorsal, central, and ventral) of a previously mapped IFC were injected, each part with a different tracer. In other experiments, 2 or 3 rows of tracer injections were made at different dorsoventral levels of AI, over a large frequency range (5-38 kHz); each injection row was oriented orthogonal to the IFCs and contained a different tracer. The main mass of the labeled thalamic cells was found in the ventral nucleus of the medial geniculate body (MGv). The MGv cells projecting to a limited sector (1-2 mm in length in most experiments) of an IFC in AI form one or several densely packed neuron clusters of variable shape. The cells labeled by a given tracer are largely separated in space from cells labeled by a different tracer. Thus, different sectors of a cortical IFC receive input from different portions of the corresponding thalamic IFC. As a general rule, cells labeled from dorsal (ventral) injections are centered rostrally (caudally) in the part of MGv innervating AI. However, the topographic details are variable between individuals, and the rostrocaudal gradient is complicated by numerous irregularities and gradients. Previous studies of the auditory thalamocortical projection in the cat have not recognized the topographic order in the isofrequency dimension. Instead, it was believed that different sectors of a cortical IFC were innervated by coincident thalamic populations.
منابع مشابه
Antidromic activation reveals tonotopically organized projections from primary auditory cortex to the central nucleus of the inferior colliculus in guinea pig.
The inferior colliculus (IC) is highly modulated by descending projections from higher auditory and nonauditory centers. Traditionally, corticofugal fibers were believed to project mainly to the extralemniscal IC regions. However, there is some anatomical evidence suggesting that a substantial number of fibers from the primary auditory cortex (A1) project into the IC central nucleus (ICC) and a...
متن کاملBranched projections in the auditory thalamocortical and corticocortical systems.
Branched axons (BAs) projecting to different areas of the brain can create multiple feature-specific maps or synchronize processing in remote targets. We examined the organization of BAs in the cat auditory forebrain using two sensitive retrograde tracers. In one set of experiments (n=4), the tracers were injected into different frequency-matched loci in the primary auditory area (AI) and the a...
متن کاملModular functional organization of cat anterior auditory field.
Two tonotopic areas, the primary auditory cortex (AI) and the anterior auditory field (AAF), are the primary cortical fields in the cat auditory system. They receive largely independent, concurrent thalamocortical projections from the different thalamic divisions despite their hierarchical equivalency. The parallel streams of thalamic inputs to AAF and AI suggest that AAF neurons may differ fro...
متن کاملOrganization and Development of Thalamocortical Pathways in the Rabbit Auditory System
Thalamocortical relations in the rabbit auditory system were investigated by calcium-binding protein immunohistochemistry and neuroanatomical tracing techniques. The differential distribution of the calcium-binding proteins parvalbumin and calbindin delineated four major subdivisions of the medial geniculate body (MGB): the ventral, dorsal, medial and internal nuclei. In addition, several subnu...
متن کاملAnatomy of the auditory thalamocortical system of the guinea pig.
We investigated the projection from the medial geniculate body (MG) to the tonotopic fields (the anterior field A, the dorsocaudal field DC, the small field S) and to the nontonotopic ventrocaudal belt in the auditory cortex of the guinea pig. The auditory fields were first delimited in electrophysiological experiments with microelectrode mapping techniques. Then, small quantities of horseradis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 10 1 شماره
صفحات -
تاریخ انتشار 1990